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SYSTEMS AND METHODS FOR MODELING
BINARY SYNAPSES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a U.S. National Stage Application of
and claims priority to International Patent Application No.
PCT/US2010/052490, filed on Oct. 13, 2010, and entitled
“SYSTEMS AND METHODS FOR MODELING BINARY
SYNAPSES,” which claims priority to U.S. Provisional
Patent Application No. 61/369,603, filed Jul. 30, 2010,
entitled “SYSTEMS AND METHODS FOR MODELING
BINARY SYNAPSES.”

STATEMENT OF GOVERNMENT INTEREST

This invention was made with government support under
Contract No. HR0011-09-3-0001, awarded by Defense
Advanced Research Projects Agency. The government has
certain rights in the invention.

TECHNICAL FIELD

Examples of the present invention are directed to systems
and methods that model binary synapses.

BACKGROUND

Early in the history of computing, computer scientists
became interested in biological computing structures, includ-
ing the human brain. Although sequential-instruction-pro-
cessing engines have technologically evolved with extreme
rapidity during the past 50 years, many seemingly straight-
forward problems cannot be effectively addressed by even the
largest and highest-speed distributed computer systems and
networks. One trivial example is the interpretation of photo-
graphs and video images. A human can, often in a fraction of
a second, glance at a photograph and accurately interpret
objects, interrelationships between objects, and the spatial
organization of objects represented by the two-dimensional
photograph, while such interpretation of photographic
images is currently beyond the ability of the largest computer
systems running the cleverest algorithms.

Extensive research efforts have been expended in investi-
gating the structure and function of the human brain. Many of
the fundamental computational entities in such biological
systems have been identified and characterized physiologi-
cally, at microscale dimensions as well as at the molecular
level. For example, the neuron, a type of cell responsible for
signal processing and signal transmission within the human
brain, is relatively well understood and well characterized,
although much yet remains to be learned. This understanding
of neuron function has inspired a number of fields in com-
puter science, including neural-network and perception-net-
work subfields of artificial intelligence. Many successful soft-
ware implementations of neural networks have been
developed to address a variety of different applications,
including pattern recognition, diagnosis of the causes of com-
plex phenomena, various types of signal processing and sig-
nal denoising, and other applications. However, the human
brain is massively parallel from a structural standpoint, and
while such parallelism can be simulated by software imple-
mentations and neural networks, the simulations are gener-
ally processor-cycle bound, because the simulations neces-
sarily run on one or a relatively small number of sequential
instruction-processing engines, rather than making use of
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physical parallelism within the computing system. Thus, neu-
ral networks may provide tolerance to noise, learning capa-
bilities, and other desirable characteristics, but do not cur-
rently provide the extremely fast and high-bandwidth
computing capabilities of massively parallel biological com-
putational structures.

In order to achieve the extremely fast and high-bandwidth
computing capabilities of biological computational struc-
tures in physical, manufactured devices, computational tasks
are typically carried out on massively parallel and intercon-
nected networks of computational nodes. Many different
approaches for implementing physical neural networks have
been proposed, but implementations have so far have fallen
fall short of the speed, parallelism, and computational capac-
ity of even relatively simple biological structures. In addition,
design and manufacture of massively parallel hardware is
fraught with any number of different practical problems,
including reliable manufacture of large numbers of dynami-
cal connections, size and power constraints, heat dissipation,
reliability, flexibility, including programmability, and many
other such considerations. However, unlike many theoretical
problems, for which it is unclear whether or not solutions can
be found, the fact that computational biological structures,
including the human brain, exist, and perform spectacular
feats of computation on a regular basis would suggest that the
goal of designing and constructing computational devices
with similar computational capacities and efficiencies is quite
possible.

Computer scientists, hardware designers, researchers
focused on artificial intelligence, biological intelligence, and
a wide variety of different fields within computer science and
information sciences, continue to seek advancements in
physical, hardware devices suitable for implementing the
types of massively parallel, distributed, dynamical processing
that occurs within the human brain and other computational
biological structures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a generalized and stylized illustration of a
neuron.

FIG. 2 shows a more abstract representation of a neuron.

FIG. 3 is an abstract representation of a neuron cell, show-
ing the different types of electrochemical gradients and chan-
nels in the neuron’s outer membrane that control, and
respond, to electrochemical gradients and signals and that are
used to trigger neuron output signal firing.

FIGS. 4A-4B show a neuron firing.

FIG. 5 shows a model for the dynamic synapse-strength
phenomenon.

FIGS. 6A-6B show schematic representations of an
example Instar and Outstar synapses.

FIG. 7 shows a schematic representation of an example
Instar model.

FIG. 8 shows a table representing an example of thermom-
eter encoding.

FIG. 9 shows example operation of a circular shift register.

FIG. 10 shows a control-flow diagram of an example
method for transforming an analog input signal into an output
signal.

FIG. 11 shows a control-flow diagram of an example
method for synaptic weight learning.

FIG. 12 shows an isometric view of an example of a cross-
bar array.

FIGS. 13A-13C show memristive characteristics of a
crossbar junction.
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FIG. 14A shows a row of configurable switches of a
nanowire crossbar for implementing the Instar model, shown
in FIG. 7.

FIG. 14B shows an example schematic circuit diagram of
the configurable switches shown in FIG. 14A.

FIG. 15 shows an example timing diagram associated with
a switch.

FIG. 16 shows an example of four source neurons sharing
the same circuitry to communicate with four sink neurons.

FIG. 17 shows a schematic representation of an example of
Outstar model learning.

FIG. 18 shows an example two-dimensional array of input
source signals fed through Instar synapses to a single sink
neuron.

FIG. 19 shows simulation results with a gray-scale photo-
graph.

DETAILED DESCRIPTION

This disclosure is directed to systems and methods that
model Instar and Outstar synaptic behavior. Populations of
synapses are modeled as dynamical, two-terminal devices
that connect pre-synaptic neurons called “source neuron” or
“source” to post-synaptic neurons called a “sink neuron” or a
“sink.” The source emits an analog source signal that is modi-
fied by a synaptic transfer function and delivered to the sink.
The synaptic transfer function depends on at least one con-
tinuous state variable that evolves over time as a function of
the signals sent by the source and the state of the sink. The
combination of a synaptic transfer function and state evolu-
tion equation models the behavior of a population of syn-
apses. Systems and methods of the present invention are
based on an Instar and Outstar model of synaptic behavior
with two-terminal switches. In particular, the binary, two-
terminal switches can be implemented using memristive nan-
odevices, because such devices can be densely packed using
crossbar arrays and posses a long time constant, or memory.

1. Biological Neurons and Synapses

Neurons are a type of cell found in the brains of animals.
Neurons are thought to be one of, if not the, fundamental
biological computational entity. It is estimated that the human
brain contains on the order of 100 billion (10'!) neurons and
on the order of 100 trillion (10'*) interconnections between
neurons. The massive number of interconnections between
neurons in the human brain is thought to be directly correlated
with the massively parallel nature of biological computing.

Eachneuron is a single cell. FIG. 1 shows a generalized and
stylized illustration of a neuron. The neuron 102 includes a
cell body 104 containing the cell nucleus 106 and various
organelles, including mitochondria, a number of branching
dendrites, such as dendrite 108, emanating from the cell body
104, and generally one very long axon 110 that terminates in
many branching extensions 112. In general, the dendrites
provide an enlarged neuron-surface area for receiving signals
from other neurons, while the axon serves to transmit signals
from the neuron to other neurons. The terminal branches of
the axon 112 interface with the dendrites, and less frequently
with the cell bodies, of other neurons. A single neuron may
receive as many as 100,000 difterent signal inputs. Similarly,
a neuron may transmit signals to tens, hundreds, or even
thousands of downstream neurons. Neurons vary tremen-
dously, within a given individual, with respect to the number
of, and degree of branching of, dendrites and terminal axon
extensions as well as with respect to volume and length. For
example, axons range in length from significantly less than
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one millimeter to over one meter. This flexibility in axon
length and connectivity allow for hierarchical cascades of
signal paths and extremely complex connection-based orga-
nizations of signaling paths and cascades within the brain.

FIG. 2 shows a more abstract representation of a neuron. A
neuron can, in general, be thought of as a node 202 that
receives input signals from multiple inputs, such as input 204,
and depending on the temporal and spatial characteristics of
the inputs, responds to input stimuli of greater than a thresh-
old intensity by firing an output signal 206. In other words, the
neuron can be thought of as a very complex input-signal
integrator combined with a thresholder and a signal-genera-
tion and signal-output mechanism. When the signal integrator
accumulates a sufficient number of input signals over a
bounded period of time and within a sufficiently small area of
the node surface, the neuron responds by firing an output
signal.

As mentioned above, input signals received by a given
neuron are generated by output signals of other neurons con-
nected to the given neuron by synapse junctions between the
other neurons’ terminal axon branches and the given neuron’s
dendrites. These synapses, or connections, between neurons
have dynamically adjusted connection strengths, or weights.
The adjustment of the connection strengths, or weights, is
thought to significantly contribute to both learning and
memory, and represents a significant portion of parallel com-
putation within the brain.

Neuron functionalities are derived from, and depend on,
complex electrochemical gradients and ion channels. FIG. 3
is an abstract representation of a neuron cell, showing the
different types of electrochemical gradients and channels in
the neuron’s outer membrane that control, and respond, to
electrochemical gradients and signals and that are used to
trigger neuron output signal firing. In FIG. 3, the neuron is
represented as a spherical, membrane-enclosed cell 302, the
contents of which 304 are separated from the external envi-
ronment 306 by a double-walled, hydrophobic membrane
308 that includes various types of channels, such as channel
310. The various types of channels provide for controlled
chemical communication between the interior of the neuron
and the external environment.

The channels primarily responsible for neuron character-
istics are highly selective ion channels that allow for transport
of particular inorganic ions from the external environment
into the neuron and/or from the interior of the neuron to the
external environment. Particularly important inorganic ions
include sodium, Na*, potassium, K*, calcium, Ca**, and chlo-
rine, CI7, ions. The ion channels are generally not continu-
ously open, but are selectively opened and closed in response
to various types of stimuli. Voltage-gated channels open and
close depending on the voltage, or electrical field, across the
neuron membrane. Other channels are selectively opened and
closed by mechanical stress, and still other types of channels
open and close in response to binding and release of ligands,
generally small-molecule organic compounds, including
neurotransmitters. lon-channel behavior and responses may
additionally be controlled and modified by the addition and
deletion of certain functional groups to and from ion-channel
proteins, carried out by various enzymes, including kinases
and phosphatases, that are, in turn, controlled by various
types of chemical signal cascades.

In general, in a resting, or non-firing state, the neuron
interior has arelatively low concentration of sodium ions 312,
a correspondingly low concentration of chlorine ions 314,
and a relatively high concentration of potassium ions 316
with respect to the concentrations of these ions in the external
environment 318. In the resting state, there is a significant
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40-50 mV electrochemical gradient across the neuron mem-
brane, with the interior of the membrane electrically negative
with respect to the exterior environment. The electrochemical
gradient is primarily generated by an active Na*—K™* pump-
ing channel 320 which uses chemical energy, in the form of
adenosine triphosphate, to continuously exchange three
sodium ions expelled from the interior of the neuron to the
external environment for every two potassium ions imported
from the external environment into the interior of the neuron.
The neuron also contains passive K* leak channels 310 that
allow potassium ions to leak back to the external environment
from the interior of the neuron. This allows the potassium ions
to reach equilibrium with respect to the ion-concentration
gradient and the electrical gradient.

Neuron firing, or spiking, is triggered by a local depolar-
ization of the neuron membrane. In other words, collapse of
the normally negative electrochemical gradient across a
membrane results in triggering of an output signal. A wave-
like, global depolarization of the neuron membrane that rep-
resents neuron firing is facilitated by voltage-gated sodium
channels 324 that allow sodium ions to enter the interior of the
neuron down the electrochemical gradient previously estab-
lished by the Na*—K™* pump channel 320. Neuron firing
represents a short pulse of activity, following which the neu-
ron returns to a pre-firing-like state, in which the normal,
negative electrochemical gradient across the neuron mem-
brane is reestablished. Voltage-gated potassium channels 326
open in response to membrane depolarization, V, to allow an
efflux of potassium ions, down the chemical potassium-ion
gradient, in order to facilitate reestablishment of an electro-
chemical gradient across the neuron membrane following
firing. The voltage-gated potassium channels 324, opened by
local depolarization of the neuron membrane, Y, are unstable,
in the open state, and relatively quickly move to an inactivated
state to allow the negative membrane potential to be reestab-
lished, both by operation of the voltage-gated potassium
channel 326 and the Na*—K* channel/pump 320.

Neuron-membrane depolarization begins at a small, local
region of the neuron cell membrane and sweeps, in a wave-
like fashion, across the neuron cell, including down the axon
to the axon terminal branches. Depolarization at the axon
terminal branches triggers voltage-gated neurotransmitter
release by exocytosis 328. Release of neurotransmitters by
axon terminal branches into synaptic regions between the
axon terminal branches of the firing neuron, referred to as the
“pre-synaptic neuron,” and dendrites of the signal-receiving
neurons, each referred to as a “post-synaptic neuron,” results
in binding of the released neurotransmitter by receptors on
dendrites of post-synaptic neurons that results in transmission
of the signal from the pre-synaptic neuron to the post-synap-
tic neurons. In the post-synaptic neurons, binding of trans-
mitters, T, to neurotransmitter-gated ion channels 330 and
332 results in excitatory input signals and inhibitory input
signals, respectively. Neurotransmitter-gated ion channels
that import sodium ions into the neuron 330 contribute to
local depolarization of the neuron membrane adjacent to the
synapse region, and thus provide an excitatory signal. By
contrast, neurotransmitter-activated chlorine-ion channels
332 result in import of negatively charged chlorine ions into
the neuron cell, resulting in restoring or strengthening the
normal, resting negative voltage gradient across the mem-
brane, and thus inhibit localized membrane depolarization
and provide an inhibitory signal. Neurotransmitter release is
also facilitated by voltage-gated calcium ion channels 329
that allow calcium influx into the neuron.

A Ca®* activated potassium channel 334 serves to decrease
the depolarizability of the membrane following a high fre-
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6

quency of membrane depolarization and signal firing that
results in build up of calcium ions within the neuron. A neuron
that has been continuously stimulated for a prolonged period
therefore becomes less responsive to the stimulus. Early
potassium-ion channels serve to reduce neuron firing levels at
stimulation levels close to the threshold stimulation required
for neuron firing. This prevents an all-or-nothing type of
neuron response about the threshold stimulation region,
instead providing a range of frequencies of neuron firings that
correspond to a range of simulations of the neuron. The
amplitude of neuron firing is generally constant, with output-
signal strength reflecting in the frequency of neuron firing.

Another interesting feature of the neuron is long-term
potentiation. When a pre-synaptic neuron fires at a time when
the membrane of a post-synaptic neuron is strongly depolar-
ized, the post-synaptic neuron may become more responsive
to subsequent signals from the pre-synaptic neuron. In other
words, when pre-synaptic and post-synaptic neuron firings
occur close in time, the strength, or weighting, of the inter-
connection may increase.

FIGS. 4A-B show neuron firing. In FIG. 4A, the resting-
state neuron 402 exhibits a negative voltage gradient across a
membrane 404. As the resting neuron receives neurotransmit-
ter-mediated signal input 406, a small region 408 of the neu-
ron membrane may receive sufficient access of stimulatory
signal input over inhibitory signal input to depolarize the
small region of the neuron membrane 408. This local depo-
larization activates the voltage-gated sodium channels to gen-
erate awave-like global depolarization that spreads across the
neuron membrane and down the axon, temporarily reversing
the voltage gradient across the neuron membrane as sodium
ions enter the neuron along the sodium-ion-concentration
gradient. The reversal of the voltage gradient places the neu-
ron into a firing 410, or spiking state, in which, as discussed
above, terminal branches of the axon release neurotransmitter
signals into synapses to signal post-synaptic neurons. The
voltage-gated sodium channels quickly become inactivated,
voltage-gated potassium channels open, and the resting-state
negative voltage gradient is quickly restored 412. FIG. 4B
shows the voltage gradient reversal at the point on the neuron
membrane during a pulse or a firing. In general, the voltage
gradient is negative 420, but temporarily reverses 422 during
the wave-like membrane depolarization that represents neu-
ron firing or spiking and propagation of the output signal
down the axon to the terminal braches of the axon

FIG. 5 shows a model for the dynamic synapse-strength
phenomenon. FIG. 5 is a plot of synapse strengthening F,
plotted with respect to the vertical axis 502, versus the time
difference between pre-synaptic and post-synaptic spiking,
plotted as At along the horizontal axis 504. When the pre-
synaptic neuron fires close in time, but prior to, firing of the
post-synaptic neuron, the amount of synapse strengthening is
relatively high, represented by the steeply increasing portion
of the plotted curve 506 to the left of the vertical axis. This
portion of the plot of F corresponds to Hebbian learning, in
which correlations in the firing of post-synaptic and pre-
synaptic neurons lead to synapse strengthening. By contrast,
when the pre-synaptic neuron fires just after firing of the
post-synaptic neuron, then the synaptic strength is weakened,
as represented by the steeply upward curving portion 508 of
the plotted curve to the right of the vertical axis. When firing
of the pre-synaptic and post-synaptic neurons is not corre-
lated in time, or, in other words, At is large in magnitude, the
strength of the synapse is not greatly affected, as represented
by portions of the plotted curve that approach the horizontal
axis at increasing distance from the origin. The synapse
weakening response to pre-synaptic and post-synaptic neu-
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ron-firing correlations, represented by the area above the
right-hand portion of the curve 510, needs to be greater than
the synapse strengthening due to correlation between pre-
synaptic and post-synaptic neuron firing, represented by the
area under the left-hand portion of the plotted curve 512, in
order for a system based on synapse strength to be stable, over
time. Otherwise, synapse strength would tend towards maxi-
mum strength, over time.

In summary, neurons serve as somewhat leaky input-signal
integrators combined with a thresholding function and an
output-signal generation function. A neuron fires with
increasing frequency as excitatory stimulation of the neuron
increases, although, over time, the neuron response to con-
stant high stimulus decreases. Synapses, or junctions,
between neurons may be strengthened or weakened by cor-
relations in pre-synaptic and post-synaptic neuron firings. In
addition, and synapse strength and neuron stimulation both
decay, over time, without reinforcing stimulus. Neurons pro-
vide a fundamental computational unit for massively parallel
neuronal networks within biological organisms as a result of
the extremely high density of connections between neurons
supported by the highly branched dendrites and axon termi-
nus branches, as well as by the length of axons.

II. An Overview of Instar and Outstar Synaptic
Models

Instar and Outstar synaptic models are now described with
reference to a single source neuron and single sink neuron.
Note, however, that for the sake of convenience the single
source and sink neurons used to describe Instar and Outstar
synaptic models actually represent at least one source neuron
and at least one sink neuron.

FIG. 6A shows a schematic representation of an Instar
synapse 602 that connects a source neuron 604 to a sink
neuron 606. The source 604 emits an analog source signal, x,
which is scaled by the synapse’s 606 “weight,” w, before
being delivered to the sink. In other words, the state of the
Instar synapse 606 is characterized by a weight, w, that trans-
forms the source signal x generated by the source neuron 604
into an output signal xw that is delivered to the sink neuron
606. This transformation of the source signal x into the output
signal xw is called the “synaptic transfer function” and is
defined as follows:

out=xw Equation (1):

On the other hand, the sink neuron 606 also produces an
analog sink signal, y, that characterizes interaction with the
input signal x and is used to determine the state evolution of
the synaptic weight w. The signal y is feedback from the sink
neuron 606. In other words, the sink neuron 606 receives and
processes the out signal and responds to out signal by gener-
ating feedback signal y. The state of the sink signal y partially
depends upon the history of incoming signals received from
synapses that drive it. Values for the source signal x, sink
signal y, and synaptic weight w are constrained to the interval
[0,1]. The sink signal y and the source signal x can be used to
determine the state evolution of the synaptic weight w by
mathematically representing the state evolution of the Instar
synapse 602 by a first-order differential equation:

dw Equation (2)
o7 S o= w

where € is a positive constant called the “learning rate,” and
dw/dt is called the “state evolution.”
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FIG. 6B shows a schematic representation of an Outstar
synapse 608 that connects a sink neuron 610 to a source
neuron 612. In an analogous manner to the Instar synapse
described above, the state evolution of the Outstar synapse
608 can also be mathematically characterized by a first-order
differential equation:

dw_
E =ex(y—w)

An electronic implementation of an Instar synapse using
conventional electronic components can be difficult to imple-
ment because of the time scale at which learning takes place
(i.e., seconds or longer). A typical analog implementation of
the differential equation (2) requires a capacitor for storing
the state w along with various operational amplifiers and
multipliers. Although circuit design of a conventional elec-
tronic implementation of the Instar synapse may reduce the
area required for such a circuit, unavoidable leakage across at
the capacitor which introduces a decay term into equation (2),
which perturbs the desired behavior and is difficult to miti-
gate. At the network level, such decay appears as memory loss
or drift.

Typical neural network models use differential equations
to describe average behavior of neuron populations, even
though the majority of a neuron’s communications are per-
formed using discrete “pulses.” Systems and methods imple-
ment a stochastic approximation of Instar and Outstar syn-
apses using synchronous, spiking neurons in order to
implement the signals x and y, and binary switches thatimple-
ment the synaptic weight w assembled as a population of
components. Systems implement the weights with binary
devices and neurons communicate with discrete electrical
pulses rather than analog voltages. In particular, the binary
synapses can be implemented with memristive nanoscale
devices. Systems of the present invention use less surface area
and require less power than either software or conventional
electronic implementations and may enable the construction
of neuromorphic integrated circuits that approach biological
scale density and power.

I11. An Instar Model

FIG. 7 shows a schematic representation of an Instar model
700 for transforming an analog input signal X into an output
signal out. The Instar model 700 interleaves computation of
the transfer function out and the time evolution of the synaptic
weight w. Analog source signal x 702 is a continuous input
transformed into a discrete N-bit codeword represented by
(X, X5, X3, - . - , X5) Using thermometer encoding 704, which
is described below with reference to FIG. 8. Each x, corre-
sponds to a “pulse” or a discrete high or a low electrical
signal. For example, an x, assigned the bit “1” may corre-
spond to a discrete high voltage, and an x, assigned the bit “0”
may correspond to a discrete low voltage. In one example,
thermometer encoding can be performed by assigning the
first M bits of an N-bit codeword the bit value “1,” and
assigning the remaining bits the bit value “0,” where M is
roughly proportional to the analog input value. Thermometer
encoding 704 can be accomplished using the following opera-
tor represented by:

M=|x(N+1)]

where |[J] is an operator that selects the largest integer less
than or equal to x (N+1). The value chosen for N determines
the precision of the discrete approximation of the analog
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value x. An auxiliary continuous variable X is defined as the
average of the bit values of the N-bit codeword as follows:

where X=x.

FIG. 8 shows a table 800 representing an example of ther-
mometer encoding using the above operator where N equals
“4.” In other words, a source signal is converted into a 4-bit
codeword represented by (X, X,, X5, X,). Withreference to the
table 800, examples of two different input source signals x
802 and 804 are now described. For source signal x equal to
0.15 (802), none of the bits in the 4-bit codeword are “1”
because M=|0.15(5)]|=|0.75]=0. In other words, the 4-bit
codeword produced by thermometer encoding is “0000”
(803). For source signal x equal to 0.79 (804), M=
[0.79(5)|=(3.95|=3. In other words, the first three bits of the
4-bit codeword produced by thermometer encoding are “1”
and the corresponding 4-bit codeword is “1110” (805).

Returning to FIG. 7, the bits of the N-bit codeword (X, X5,
X3, . - . 5 Xy) are parallel loaded into a circular shift register
706. The weight w is implemented with N configurable
switches 708, where each configurable switch applies a
weight w, to a bitx, of the N-bit codeword. The weight applied
by each switch is characterized as a binary variable. An aux-
iliary value W is defined as the average of the N binary vari-
ables w;, as follows:

W=

=|

L&
2m
o1

where W=w. As shown in FIG. 7, each bit x, stored in the
circular shift register 706 is sent through a corresponding
configurable switch with weight w,. The circular shift register
706 is cycled N times in order to send N “pulses” or bits x,’s
through each of the binary switches, w,, where the weighted
pulses, w,x,, are accumulated 710 to generate the output sig-
nal out 712. In other words, for each of the N cycles, the
circular shift register 706 shifts the bits of the N-bit codeword
such that the binary value of X, becomes the binary value of
X,,,; and the binary value of x,becomes the binary value of x,.
Each bit x, is then sent through a corresponding configurable
switch that applies a weight w, resulting in w,x; and the values
w,X, are accumulated to generate the output signal out 712.
After N cycles, the output signal 712 is given by:

out=Fw.

FIG. 9 shows operation of the circular shift register 706 for
an example 4-bit codeword. Thermometer encoding 704 is
applied to the input signal x 902 to produce the 4-bit code-
word “1100,” which is input and stored in the circular shift
register 706. The number of cycles carried out by the circular
shift register is 4 (i.e., N=4). For the first cycle j equal to 1,
each bit x; or pulse is sent through a corresponding switch w;,
and the resulting weighted values w,x, are accumulated 710.
For the second cycle j equal to 2, as shown in FIG. 9, the bits
associated with the 4-bit codeword (X,, X,, X5, X,) are circu-
larly shifted such that the bit of x, becomes the bit of x,, the
bit of x, becomes the bit of x5, the bit of x; becomes the bit of
X, and the bit of x,, becomes the bit of x, . Each bit x, or pulse
is sent through a corresponding switch w, and the weighted
values are accumulated 710. For the third cycle j equal to 3,
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the bits associated with (X, X,, X5, X,,) are again shifted again
in the same manner, the pulses associated with the bits are
sent through corresponding switches, and the weighted val-
ues are accumulated 710. For the fourth cycle j equal to 4, the
bits associated with (x,, X,, X3, X,) are shifted for a final time
in the same manner, each bit is sent through a corresponding
switch, and the weighted values are accumulated 710. When
the four cycles are completed, the output signal out is pro-
duced.

Returning to FI1G. 7, after the completion of the N cycles, a
synaptic state update of the weights, also called “learning”, is
performed. The analog sink signal y 714 is replaced with a
stochastic binary value denoted by § 716 that pulses at a rate
proportional to the value of the sink signal y. For example, a
y value of 0.25 corresponds to a stochastic ¥ that randomly
pulses (i.e., assumes the bit value “1”) on average, 25% of'the
time. In other words, ¥ equals “1” with probability y, and ¥
equals “0” with probability (1-y). Independent stochastic
binary variables €,, €,, €, . . . , €5, each take on the bit value
“1” with fixed probability €, where € is an application specific
design parameter with a selected value that is typically
smaller than 0.001 The independent stochastic binary vari-

ables define N auxiliary variables y,, v,,Vs, . . ., Vydefined as:
yiey
Each of the N auxiliary variables y,, V5, V3, - . ., Yo 718

determines the state evolution of the weight of a correspond-
ing switch, as described below. In other words, at the end of N
cycles, N auxiliary variables y,, Vs, Vs, - - . , Y are generated
and used to change, or update, the weights w,, w,, W5, .. .,
Wy, respectively, associated with each configurable switch.
The N cycles and updating the weights of the switches is
called a “major cycle.”

Next, evaluation of the transfer function is described and is
shown to approximate Equation (1). Subsequently the circuit
operations that implement synaptic weight update are
described, and it is shown that the circuit stochastically
approximates the time evolution of equation (2). Finally, a
circuit implementation for the schematic representation
shown in FIG. 7 is described.

III.A. Evaluating the Transfer Function

The schematic representation of FIG. 7 is implemented
sequentially. At the beginning of a major cycle, a source
signal x is input. As described above, each major cycle is
performed N+1 times. The first N cycles carry out evaluation
of'the transfer function to produce the output signal out. At the
conclusion of the first N cycles, an approximation of the
desired output signal out is generated 712. The final (N+1)th
cycle performs a synaptic weight update.

FIG. 10 shows a control-flow diagram of a method for
performing Instar neuron learning. In block 1001, the analog
source signal x is encoded to produce an N-bit codeword (X,
X, X3, - - . 5 X5). The source signal x can be encoded using
thermometer encoding 704 as described above with reference
to FIG. 8. In block 1002, the N-bit codeword (X, X5, X3, - . - ,
X,,) 1s parallel loaded into a circular shift register, such as the
circular shift register 706 shown in FIG. 7. In block 1003, the
output state out is initialized to “0.” In the for-loop of block
1004, blocks 1005-1007 are repeated N times. In block 1005,
the weighted values w,x, output from each switch are accu-
mulated as follows:
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1 N
out « out+ —Z Xiwi
) Wi

N i=1

In block 1006, the binary values of the N-bit codeword are
circularly shifted as described above with reference to the
example of FIG. 9. In block 1007, when the index j is less than
N, the method proceeds to block 1008. Otherwise, the method
proceeds to block 1009. In block 1008, the index j is incre-
mented. In block 1009, the output signal out is output. In
block 1010, the weight w, associated with each switch, as
described below with reference the control-flow diagram in
FIG. 11 titled “Method for synaptic state evolution.” In block
1011, blocks 1001-1010 can be repeated for another major
cycle.

The method shown in FIG. 10 can be shown to approximate
the Instar transfer function as follows. First note that in the
for-loop of blocks 1004-1008, the value of the output signal
can be represented as follows:

=
= 2 5T S S
=0 =1

Rearranging terms gives the result:

1 N-1

1 N
out = ﬁ E w; WZ X(i+ jymodN
i=1 a

i S

The rightmost summation is a summing over all of the bits in
the N-bit codeword (X, X,, . . . , X5), Which yields the same
result for any value of'i, enabling the equation to be simplified
as follows:

II1.B Synaptic State Learning

Synaptic state update, or learning, as referenced above in
block 1010 of FIG. 10 is performed only during the final
sub-cycle of a major cycle. FIG. 11 shows a control-flow
diagram of a method for synaptic state evolution. The method
of FIG. 11 describes a learning law for the state evolution of
each binary weight variable w, from its current state, w,, to its
next state, w',, of the subsequent major cycle. The for-loop of
block 1101 repeats blocks 1102-1106 for each cycle. In block
1102, when y, equals the binary value “1,” the method pro-
ceeds to block 1103; otherwise, the method proceeds to block
1104. In block 1103, the binary value assigned to the weight
of'the next major cycle w', is binary value of the bitx,. Inblock
1104, the binary value assigned to weight of the next major

10

15

20

25

30

35

40

45

50

12

cycle w'; is the binary value of the weight from the previous
major cycle w,. In block 1105, when i is less than N, the
method proceeds to block 1106; otherwise the method pro-
ceeds to block 1107. Inblock 1106, the index i is incremented.
In block 1107, the method returns to the method described
above with reference to FIG. 10.

An implementation of the learning law described in FIG.
11 is described in the subsequent subsection IV. Note that
when y,=1,

Aw;=x;-w;

Consider the evaluating all possible scenarios of the learning
law as presented in Table 1:

TABLE 1
X; W; w'; Aw;
0 0 0
0 1 0 -1
1 0 1 1
1 1 1 0

Consider first the case where y is fixed at 1.0, implying that ¥
equals 1. By substitution of Aw, and using the assumption that
the associated €, stochastic variables are independent, the
expectation value of the change in W given §=1 is:

If'¥ equals “0,” the weights do not change by definition of the
learning law, thus

E(AW[F=0)=0

Because ¥ equals “1” with probability y, and is equal to “0”
with probability (1-y), the average change in W is given by:

E@AW) = yEAW| 5= 1D+ (1 - nEAw] 5% 1)
= ey(E - W)

~ ey(x —w)

which is the Instar learning law, the desired behavior for the
circuit.

IV. Implementation

Conventional analog and digital circuitry can be used to
implement Instar and Outstar learning models with memris-
tive devices, or memristors, used as two-terminal switches.
For example, the Instar model 700 can be implemented at the
nanoscale or microscale using a crossbar array with memris-
tor crossbar junctions. FIG. 12 shows an isometric view of a
crossbar array 1200. The crossbar array 1200 is composed of
afirst layer of approximately parallel nanowires 1202 that are
overlain by a second layer of approximately parallel nanow-
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ires 1204. The nanowires of the second layer 1204 are
approximately perpendicular, in orientation, to the nanowires
of'the first layer 1202, although the orientation angle between
the layers may vary. The two layers of nanowires form a
lattice, or crossbar, each nanowire of the second layer 1204
overlying all of the nanowires of the first layer 1202 and
coming into close contact with each nanowire of the first layer
1202 at nanowire intersections that represent the closest con-
tact between two nanowires. Although individual nanowires
in FIG. 12 are shown with rectangular cross sections, nanow-
ires can also have square, circular, elliptical, or more complex
cross sections. The nanowires may also have many different
widths or diameters and aspect ratios or eccentricities. The
term “crossbar” may refer to crossbars having at least one
layer of nanowires, sub-microscale wires, microscale wires,
or wires with larger dimensions.

The layers of a crossbar array can be fabricated by
mechanical nanoimprinting techniques. Alternatively,
nanowires can be chemically synthesized and can be depos-
ited as layers of approximately parallel nanowires in at least
one processing step, including Langmuir-Blodgett processes.
Other alternative techniques for fabricating wires may also be
employed. Thus, a two-layer crossbar comprising first and
second layers, as shown in FIG. 12, can be manufactured by
any of numerous relatively straightforward processes. Many
different types of conductive and semi-conductive nanowires
can be chemically synthesized from metallic and semicon-
ductor substances, from combinations of these types of sub-
stances, and from other types of substances. A nanowire
crossbar may be connected to microscale address-wire leads
or other electronic leads, through a variety of different meth-
ods in order to incorporate the nanowires into electrical cir-
cuits.

At each nanowire intersection, an electronic component,
such as a nanoscale memristor, or analogous electronic com-
ponent, can be fabricated to interconnect two overlapping
nanowires to form a switch. For example, as shown in FIG.
12, memristors 1206 located at each of the crossbar intersec-
tions form switches.

Memristors can be used as resistive analog memories that
are capable of storing state information with very little decay
for long periods of time, such as days, weeks, months, and
possibly years. In certain examples, a single bit can be stored
in each memristor using the high-resistance state of the mem-
ristor to represent a logic “0” bit value, and the low-resistance
state to represent a logic “1” bit value. FIGS. 13A-13C show
the memristive characteristics of cross junctions that can be
fabricated by currently available techniques. FIG. 13A illus-
trates a single crossbar junction. The crossbar junction com-
prises memristive material 1302 at the junction between a
first, input nanowire 1304 and a second, output nanowire
1306. FIG. 13B shows a circuit symbol 1308 that represents
the memristor 1302 and lines 1310 and 1312 that represent the
nanowires 1304 and 1306, respectively. FIG. 13C shows a
plot of current I versus voltage V for a typical memristor
located at a nanoscale crossbar junction. Solid curve 1318
shows a plot of the current of the memristor in a low-resis-
tance state, and dashed nonlinear curve 1320 represents the
memristor in a high-resistance state. Low voltages within the
voltage interval 1322 have negligible affect on the resistive
state of the memristor, while larger voltages can change the
memristor’s resistance state. A positive voltage exceeding the
positive “on” threshold 1324 causes the memristor to switch
into the low-resistance state 1318, while a negative voltage
less than the negative “oft” threshold 1326 causes the mem-
ristor to switch into the high-resistive state 1320.
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FIG. 14A shows a row of N-configurable switches
Wi, . .., Wy of a nanowire crossbar for implementing the
Instar model 700. As described above with reference to FIG.
7, the Instar model 700 transforms an analog input signal x
into an output signal out. Each of the N-configurable switches
Wi, ..., Wyelectronically connects a nanowire of a first layer
of N nanowires 1402 to a single nanowire 1404 in a second
layer of nanowires. The nanowire 1404 is electronically con-
nected to an integrator 1406. As shown in the example of FIG.
14A, each bit x, stored in circular shift register 1408 is sent
through a corresponding nanowire in the first layer of nanow-
ire 1402 to a configurable switch with weight w,. As described
above with reference to FIG. 7, the circular shift register 1408
is cycled N times in order to send N “pulses” or bits x,’s
through each of the binary switches w,, where the weighted
pulses w x, are accumulated by the integrator 1406 to generate
the output signal out 1410. In other words, for each of the N
cycles, the circular shift register 1408 shifts the bits of the
N-bit codeword such that the binary value of x, becomes the
binary value of x,, , and the binary value of x,, becomes the
binary value of x,. Each bit x, is then sent through a corre-
sponding configurable switch that applies a weight w, result-
ing in a weighted bit w x, and the values w x, are accumulated
by the integrator 1406 to generate the output signal out 1410.
After N cycles, the output signal 1410 given by

out==%w

is produced.

FIG. 14B shows a schematic circuit diagram of the N-con-
figurable switches w, . . . , W, and integrator 1406 shown in
FIG. 14A. The integrator 1406 includes a capacitor 1412, a
resistor 1414, a first switch S,, a second switch S,, and a
differential amplifier 1416. During evaluation of the transfer
function f or each of the first N cycles of a major cycle, for
each switch w, the switch S, is closed to the eval position and
S, is closed. In FIG. 14B, each function f(x,) represents
sending a narrow pulse or voltage to a corresponding mem-
ristor w, when x; equals the logic “1” bit value, and sends no
pulse (i.e., approximately no or a low voltage) when x, equals
the logic “0” bit value. These pulses are integrated by the
integrator 1406 to compute the variable output signal out
1410. On the other hand, during learning or state evolution,
which occurs as the last action of a major cycle, switch S, is
closed to the learn position and signals f(x,) and g(y,) col-
laborate to implement the state change of w, shown in Table 1.
S, is also closed during learning in order to discharge the
capacitor 1412, resetting the out variable to 0. Each memris-
tor is terminated to a virtual ground 1418 on the integrator
1406. If a non-zero pulse f(x,) is sent, the current through the
corresponding memristor is equal to the amplitude of the
pulse times the conductance of the switch, or weight w,.
These pulse currents are collected and summed by the inte-
grator 1406 at the capacitor 1412. During the N evaluation
cycles, the circulating shift register holds each of the x, bits in
turn so that upon completion, the integrated voltage on the
capacitor 1412 is proportional to

'Dﬁz

w,, which is the desired transfer function.

FIG. 15 shows an example timing diagram associated with
aswitch operated with a 4-bit codeword. Axis 1502 represents
time, and perpendicular axis 1504 represents voltage for the
signals f(x,) and g(y,). Cycles 1-4 are separated by dashed
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lines, such as dashed line 1506. In cycle 1, 2, and 4, nonzero
pulses 0(x,) 1508-1510 are sent from the circular shift register
when the logic bit value x, is “1,” and no pulse is sent during
cycle 3 when the logic bit value %, is “0” and the pulses are
integrated by the summing circuit shown in FIG. 14. The final
part of the major cycle, is learning where the value of x; during
cycle 1 has returned in the circular shift register to its original
logic bit value. During learning, f(x,) sends a positive pulse
1512 in the second half of the learning phase if x; equals the
logic bit value “1,” or f(x,) sends a negative pulse 1514 in the
first half of the learning phase if x, equals 0. In the example
shown in FIG. 15, only the positive pulse 1512 would be sent
because x, equals logic bit value “1” during cycle 1. The g(y,)
signal sends pulses 1516 and 1518 only when y, equals 1, and
the pulse align in time with the positive or negative pulse sent
by £(x,).

The pulses sent by f(x,) and g(y,) are approximately
aligned in time. Each pulse has an amplitude V which is below
the switching threshold of the memristor. In other words, if a
single f(x,) pulse arrives at a memristor without a correspond-
ing aligned g(y,), neither pulse alters the resistance state of the
memristor. But when f(x,) and g(y,) pulses are aligned in
time, the net voltage drop across the memristor exceeds the
switching threshold of the memristor, potentially changing
the resistance state, as described above with reference to FIG.
13C. In summary, with reference to FIGS. 13C and 15, there
are three cases to consider for changing the weight w;, of a
switch:

1. y,=0. In this case, g(y,) does not generate any pulses, so
the resistance state of the memristor does not change. In other
words, w, is not changed.

2.y~1 and x,=0. In this case, g(y,) generates positive and
negative pulses 1516 and 1518, as shown in FIG. 15, while
f(x,) generates only the negative pulse 1514 that aligns with
the positive g(y,) pulse 1516. The net voltage drop across the
memristor is negative and exceeds the “off” threshold 1324
required to drive the device into the low-conductance state
1320. In other words, w, equals logic bit value “0.”

3.y~1 and x,=1. Again g(y,) generates positive and nega-
tive pulses 1516 and 1518 while f(x,) generates only the
positive pulse 1512 that aligns with the negative pulse 1518.
The net voltage drop across the memristor is positive and
exceeds the “on” threshold 1322 and drives the memristor
into the closed, high-conductance state 1318. In other words,
w, equals logic bit value “1.”

In certain systems, all of the circuitry except for the mem-
ristive switches can be shared by a large number of synapses.
Since neurons typically have a high fan-in and high fan-out,
the cost of the analog and digital circuitry can be amortized
over a very large number of implemented synapses. FIG. 16
shows an example of four source neurons that share the same
circuitry to communicate with four sink neurons. For
example, the circuitry used by source neuron 1602 to send
source signals 1603 to sink neuron 1604 can be used by
source neuron 1602 to send source signals 1605-1607 to sink
neurons 1610-1612, respectively.

V. An Outstar Model

The Outstar learning law has the same transfer function as
the Instar model, and a state evolution equation that inter-
changes the roles of the singles x and y as described above
with reference to FIG. 6B. FIG. 17 shows an example sche-
matic representation of an Outstar model 1700. The Outstar
model 1700 interleaves computation of the transfer function
out and the time evolution of the synaptic weight w. Analog
sink signal y 1702 is a continuous input transformed into a
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discrete N-bit codeword represented by (V,, V2, Vs - - - 5 Ya)
using thermometer encoding, as described above with refer-
ence to FIGS. 7 and 8. An auxiliary continuous variable z is
defined as the average of the bit values of the N-bit codeword
as follows:

y= %Z}’i

where ¥=y. The bits of the N-bit codeword (y,, V5, V35 - - -, Vo)
are parallel loaded into a circular shift register 1706. The
weight w is implemented with N configurable switches 1708,
where each configurable switch applies a weight w,; 1708 to a
bit y, of the N-bit codeword. The weight applied by each
switch is characterized as a binary variable, as described
above with reference to FIG. 7. Each bit y, stored in circular
shift register 1706 is sent through a corresponding config-
urable switch with weight w,. The circular shift register 1706
is cycled N times in order to send N “pulses” or bits y,’s
through each of the binary switches, where the weighted
pulses, w,y;, are accumulated 1710 to generate the output
signal out 1712, as described above with reference to FI1G. 7.
After N cycles, the output signal 1712 is given by:

out==%w

After the completion of the N cycles, a synaptic state update
or learning of the weights is performed. The analog source
signal x 1714 is replaced with a stochastic binary value
denoted by z 1716 that pulses at a rate proportional to the
value of the source signal x. Independent stochastic binary
variables €, €, €, . . . , €5, define N auxiliary variables x,, X,,
X3, - . . , X5 defined as:

XiT€X

Each of the N auxiliary variables x,, X5, X5, . . . , X5y 1718
determines the state evolution of the weight of a correspond-
ing switch, as described above. The Outstar learning model
can be implemented in the same manner as the Instar learning
model described above, but with the roles of signals x and y
reversed.

VI. Simulation Results

The Instar learning model can be used to learn analog
patterns. When the sink single y is fixed at 1 in the state
evolution equation (2), the steady state solution becomes:

w=x

Consider for example the visualization example shown in
FIG. 18. FIG. 18 shows a two-dimensional array of input
source signals, x,;, 1802 fed through Instar synapses to a
single sink neuron 1804. The Instar synapses are represented
by directional arrows, such as directional arrow 1806. The
two-dimensional array 1802 corresponds to a gray-photo-
graph, where each input source signal x,; corresponds to a
gray-scale value associated with a pixel of the gray-scale
photograph. For example, source signal x,; equal to 0 corre-
sponds to a black pixel, x,; equal to 1 corresponds to a white
pixel, and intermediate values correspond to a gray-scale
value. As shown in FIG. 18, each source signal passes through
a synapse with an associated weight w,.

FIG. 19 shows simulation results with a gray-scale photo-
graph for the input signals represented in FIG. 18. In this
network, N is equal to 16, € is equal to 0.01, and y is equal to
“1.” The signals x,; correspond to the gray-scale pixels of the
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actual photograph. Each memristive switch w,; was randomly
initialized to either a low- or a high-resistance state which
equal probability as represented by the image produced at
major cycle 0. Each pixel in the images shows that corre-
sponding value of W, which is the sum of the state of the
switches comprising the Instar synapse connecting that pixel
to the sink neuron. FIG. 19 reveals that as the number of major
cycle increases from 0 to 250, the weights w,; are adjusted so
that the photograph is reproduced.

The foregoing description, for purposes of explanation,
used specific nomenclature to provide a thorough understand-
ing of the invention. However, it will be apparent to one
skilled in the art that the specific details are not required in
order to practice the invention. The foregoing descriptions of
specific examples of the present invention are presented for
purposes of illustration and description. They are not
intended to be exhaustive of or to limit the invention to the
precise forms disclosed. Obviously, many modifications and
variations are possible in view of the above teachings. The
examples are shown and described in order to best explain the
principles of the invention and its practical applications, to
thereby enable others skilled in the art to best utilize the
invention and various examples with various modifications as
are suited to the particular use contemplated. It is intended
that the scope of the invention be defined by the following
claims and their equivalents:

The invention claimed is:

1. A method comprising:

receiving an analog input signal;

transforming the analog input signal into an N-bit code-

word, wherein each bit of the N-bit codeword is repre-
sented by an electronic pulse, wherein N is greater than
one;
loading the N-bit codeword into an N-bit circular shift
register, wherein each bit of the N-bit circular shift reg-
ister is coupled to a corresponding switch of N switches;

sending each bit of the N-bit codeword from the N-bit
circular shift register through the corresponding switch
ofthe N switches, wherein each switch of the N switches
applies a corresponding weight to the bit to produce a
weighted bit;
summing the N weighted bits using an integrator to obtain
a summation of the N weighted bits; and

outputting a signal corresponding to the summation of the
N weighted bits produced by the N switches, the signal
representing a synaptic transfer function.

2. The method of claim 1, wherein transforming the input
signal into an N-bit codeword further comprises each pulse
representing a bit as a high voltage or a low voltage of an
electronic signal.

3. The method of claim 1, wherein loading the N-bit code-
word into the N-bit circular shift register further comprises
loading the N bits of the N-bit codeword in parallel into the
N-bit circular shift register.

4. The method of claim 1, further comprising:

circularly shifting each bit value of the N-bit codeword

through each bit of the N-bit circular shift register.

5. The method of claim 4 further comprising:

after each circular shift of the N-bit circular shift register,

sending each shifted bit of the N-bit codeword from the
N-bit circular shift register through one of the N
switches.
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6. The method of claim 5 further comprising:

accumulating weighted bits after each circular shift of the
N-bit circular shift register.

7. The method of claim 1 further comprising updating the
weights of each switch prior to sending the N bits of the N-bit
codeword.

8. The method of claim 1, wherein sending each bit of the
N-bit codeword through one of N switches further comprises
sending the N-bits through the N switches in parallel.

9. The method of claim 1, wherein each switch further
comprises a memristor crossbar junction of a crossbar array.

10. The method of claim 9, wherein the crossbar array
comprises:

a first set of approximately parallel nanowires, wherein
each nanowire in the first set is coupled to one bit of the
N-bit circular shift register;

a second set of approximately parallel nanowires, wherein
each nanowire in the second set overlaps the nanowires
in the first set.

11. The method of claim 1, wherein the integrator com-
prises a capacitor to store the sums of the weighted bits as
electric charge.

12. The method of claim 1, wherein the integrator com-
prises a differential amplifier that receives each bit at an input.

13. The method of claim 1, wherein transforming the ana-
log input signal into the N-bit codeword comprises using a
thermometer encoding.

14. A system for modeling binary synaptic behavior com-
prising:

a first set of approximately parallel nanowires, wherein
each nanowire receives a pulse corresponding to a bit of
an N-bit codeword;

a second set of approximately parallel nanowires, wherein
each nanowire in the second set overlaps the nanowires
in the first set;

a memristor located at each nanowire intersection, each
memristor connects a nanowire in the first set to a
nanowire in the second set and applies a weight to a bit
of the N-bit codeword to produce a weighted bit; and

at least one integrator, each integrator electronically con-
nected to a nanowire in the second set and sums the
weighted bits to produce a output representing a synap-
tic transfer function.

15. The system of claim 14 further comprising a circular
shift register electronically connected to the first set of
nanowires, the circular shift register circularly shifts the bit
values of the N-bit codeword and sends each shifted bit
through one of the N switches.

16. The system of claim 14, wherein each pulse further
comprises a high voltage or a low voltage of an electronic
signal.

17. The system of claim 14, wherein the integrator further
comprises a capacitor that stores the sums of the weighted bits
as electric charge.

18. The system of claim 14, wherein the integrator further
comprises a differential amplifier that receives each bit at an
input.

19. The system of claim 14 further comprising an analog-
to-digital converter that converts an analog signal into the
N-bit codeword.



